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1. Introduction

The ICARDA Agro-Climate Tool (hereafter, ‘the application’) is a Visual Basic (6)
program that can be run on Windows 98, 2000, and XP operating systems. It should be
installed on a PC with a Pentium III or better microprocessor and at least 230 Mbytes of
available hard disk space. Monitor screen resolution should be at least 1024 X 768 pixels
but no more than 1920 X 1440 pixels. Instructions for the application’s use can be found
by left single-clicking on ‘Instructions’ on the application’s upper left corner.

The application’s primary daily variables (daily minimum temperature, daily
maximum temperature, precipitation) were generated by modified GEM6 (Hanson et al.,
1994) weather generator code. For reference to primary variable generation, see the flow
chart in Fig. 2. Secondary variables (daily dew point temperature, short-wave surface
radiation, net outgoing long-wave radiation and reference grass evapotranspiration) were
derived from primary variables using algorithms drawn from the FAO’s ‘Guidelines for
Computing Crop Water Requirements’ (Allen et al., 1998), hereafter referred to as ‘FAO-
56’. Crop evapotranspiration values were then derived from the reference grass ET values
using the FAO-56 single crop coefficient method. For reference to secondary variable
generation, see the flow chart in Fig. 6.

3. Data

The application’s climate statistics are derived from two data sets that provide daily
records of minimum and maximum temperature and precipitation. The main data source
is the Global Daily Summary Data (GLDS) set (National Climatic Data Center, 1994),
which provides data for ICARDA growing regions from 590 meteorological station
locations. The period of record for this data set is October 1977 to December 1991. The
secondary data source is the Global Daily Climatology Network data (National Climatic
Data Center, 2002), which provides records of primary daily variables at 59 locations
(Fig. 1). Data from GDCN stations is of varying duration, but in some cases begins in the
early 20" century. However, because the application’s operation involves the averaging
of weather generator parameters from different stations to derive parameters for locations
between stations, those parameters must be derived from data over a uniformly defined
period. As a result, the decision was made to limit the calculation of statistics from
GDCN data to the GLDS data period, i.e., 1977-1991. Future versions of the application
will attempt to expand data coverage to a longer data period.

3. Statistics Calculation

3.1 Sampling Requirements and Uncertainty

The lack of long-term daily station data, and the sparse nature of the data that was
available over the ICARDA mandate region, was a primary limiting factor in the
calculation of the climate statistics the application is based on. One of the leading
development challenges involved deriving climatologically representative streams of
stochastic weather variability from relatively short, and sometimes fragmentary, weather
records. This challenge was met mainly through modifications to the original GEM6 code
of Hanson et al., (1994) and by imposing minimum data sampling requirements. An addi-
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Figure 1. Locations of the 590 GLDS (dots) and 59 GDCN (star) meteorological stations used here.

tional strategy for addressing this problem requires the end-user to use the application in
a way that acknowledges the possibility of the resulting sampling uncertainties.

Normally, GEM6 code calculates weather statistics over 24 bi-weekly periods of the
year, but the limited daily data availability over ICARDA agriculture areas made bi-
weekly averaging impractical. As a result, the GEM6 weather generator parameters
calculated here were derived from monthly statistics of precipitation, and minimum and
maximum temperature. A complete daily data record during October 1977-December
1991 would result in approximately 14*30 = 420 daily weather measurements
contributing to each month’s precipitation and temperature statistics. However, in
ICARDA agricultural areas outside of the former Soviet Union data gaps were frequent.
To provide adequate station coverage over those areas while also calculating reasonably
representative monthly statistics, a minimum sampling threshold of 60 days for monthly
statistics was imposed. Thus for example, the mean daily maximum temperature for
January at a station location might be based on as few as 60 daily temperature
measurements. Deriving an average from such a relatively small number of
measurements can lead to the following biases:

1. Sampling error in the resulting statistic. The magnitude of this sampling error is
proportional to N2, where N is the number of measurements (Mendenhall et al.,
1990). A sample mean calculated from N=60 measurements can lead to an error




(i.e., the difference between the true, population mean and the mean calculated
from a 60 day sample) of the order of .13 * ¢, where o is the standard deviation
of the population distribution. However, this error can be as large as .26 * ©.
Errors for monthly rainfall transition probabilities (i.e., p00, p10 in Section 3.2),
and daily temperature cross correlation values used in the GEM6 multivariate
temperature generation scheme (i.e. Eq.s 12-15 in Hanson et al., 1994) may be of
similar magnitude (See Appendix A).

2. Statistics representative of a limited subset of years during 1977-1991. Limiting
the calculation of monthly statistics to 60 or more days makes it possible that
those days may be, in the worst case, from two consecutive years, e.g. Jan. 1979
and Jan. 1980. Under those circumstances, the resulting statistics would not be
representative of 1977-1991, and could differ considerably from nearby stations
that reported more January data during the 1977-1991 period.

The method suggested here for identifying these possible errors is based on the
assumption that they will most likely not be consistently evident at neighboring station
locations. In operating the application the user selects a location by left-clicking the
location on the large map. The nearby stations whose Fourier parameters will be used to
estimate the location’s GEM6 parameter set will then flash in sequence. In practice, the
user should always compare the application’s results for a location with the
corresponding results for each of those nearby stations. The user should also compare
each of the nearby station’s results with one another. For example, the annual cycles for
the probability of heat and cold stress and the probability of exceedance curves for
precipitation and growing degree days might be compared. If these comparisons show
one station’s results to differ clearly from the remaining stations, that station’s GEM6
parameters may have been derived from biased statistics. In that case the user should
consider using results derived only from one of the remaining nearby stations.

3.2 Calculation of Monthly Statistics

The limitations of daily data over ICARDA agricultural regions also influenced the
choice of statistics that were calculated from the data. The original GEM6 code calculates
two sets of temperature statistics: the mean and standard deviation of maximum and
minimum temperature during dry days, and the mean and standard deviation of maximum
and minimum temperature during days with rain. However, dividing the temperature data
this way would have caused many stations to fail the minimum monthly sampling
requirement described above. As a result, temperature statistics here were calculated over
all days, both wet and dry. For each station, temperature variation throughout the year
was described through four sets of statistics:

1. Mean maximum daily temperature (TMXM) for month i, i = Jan. Feb., .....Dec.

Standard deviation of maximum daily temperature (TMXS) for month i, i = Jan.

Feb.,...Dec.

Mean minimum daily temperature (TMNM) for month i, i = Jan. Feb., .....Dec.

4. Standard deviation of minimum daily temperature (TMNS) for month i, i = Jan.
Feb.,...Dec.

et



GEM6 uses multivariate regressive and autoregressive relationships to derive daily
anomalies of maximum and minimum temperature (tmax, tmin) and short-wave surface
radiation (srad) based on the current and previous day’s anomaly values (Eq. 12-15
Hanson et al. (1994)). The 3 X 3 ‘A’ and ‘B’ matrices defining these regressive
relationships are derived from cross correlation values calculated between tmin, tmax,
and srad at 0 and 1 days lag. But because daily srad values are not available over the
ICARDA mandate region, temperature generation here is based on 2 X 2 matrices that
are derived from cross correlation values calculated only between daily tmin and tmax
values. Although GEMG6 calculates ‘A’ and ‘B’ matrices for each month, this application
calculates only one ‘A’ and ‘B’ matrix per station, which are in turn derived from annual
averages of tmin and tmax correlation and cross correlation values. These matrices are
formed from 8 values:

5. A(L1), A(1,2), A2,1), A(2,2)
6. B(1,1),B(1,2),B(2,1), B(2,2)

The probability that a day will be rainy in the GEM6 generation scheme depends on
two sets of monthly statistics:

7. The probability that a dry day will be followed by a dry day (p00) during month i,
i=Jan., Feb., ....Dec.

8. The probability that a wet day will be followed by a dry day (p10) during month i,
i=Jan., Feb., ....Dec.

GEMG6 code normally assigns the amount of rain that falls on a wet day using a mixed
exponential distribution. However, here it was found that the three-parameter mixed
exponential distribution did not perform noticeably better than a simple one-parameter
exponential distribution. As the parameter for an exponential distribution is the
expectation of the distribution’s variable, (page 167-68, Mendenhall (1990)), the
exponential parameter used here is the average of the daily rainfall totals, calculated for
each month of the year.

9. The mean of daily rainfall totals (XMU) during month i, i = Jan., Feb.,...Dec.
4. GEM6 Fourier Parameter Calculation and Storage.

The annual cycles of monthly statistics described in Section 3 above (i.e., statistics 1-
4 and 7-9) are interpolated to daily variability in the application by solving for the first
three annual Fourier harmonics, and then using those harmonics to reconstruct a
smoothed version of the monthly annual cycle through an inverse transform. The results
of the Fourier transform are stored here in the Access Database ‘Data/PAR_GEN.mdb’ in
the table ‘par_gen’. That table’s contents provides the primary inputs for the application’s
daily weather generation scheme. The table consists of 649 rows, one for each
meteorological station. Bach row consists of 62 columns. Columns 1-5 identify the
station and its geographic coordinates:



Column 1: Station Index (‘stnindx’ = 1-649)

Column 2: 11 character Station Identifier (‘stnid’)

Column 3: Station Longitude (‘stnlon’) with degrees E. > 0, degrees W. <0.
Column 4: Station Latitude (‘stnlat’).

Column 5: Station Elevation (‘stnelev’) in meters.

The results of the Fourier transforms of Section 3’s 1-4 and 7-9 statistics are stored in
columns 6-54. The Fourier transform for each annual cycle of monthly statistics produces
seven real numbers: the mean of the annual cycle, the amplitudes of the first three annual
harmonics and the phase angles of the first three annual harmonics. Columns 6-12 store
the results for the ‘p00’ statistic:

Column 6: Annual Mean of p00 (‘pOOmean’).

Column 7: First Harmonic Amplitude for p0O (‘pOOamp1’).
Column 8: Second Harmonic Amplitude for p00 (‘p00amp?2’).
Column 9: Third Harmonic Amplitude for p0O (‘pOOamp3’).
Column 10: First Harmonic Phase Angle for p0O (‘pOOpanl’).
Column 11: Second Harmonic Phase Angle for p00O (‘pOOpan2’).
Column 12: Third Harmonic Phase Angle for p00 (‘pOOpan3’).

Columns 13-54 store the Fourier parameters for the remaining 6 annual cycles of monthly
statistics.

Fourier Parameters for p10 (‘plOmean’-‘p10pan3’)

Fourier Parameters for XMU (‘XMUmean’-‘XMUpan3’)
Fourier Parameters for TMNM (‘TMNMmean’-‘TMNMpan3’)
Fourier Parameters for TMNS (‘TMNSmean’—-‘TMNSpan3’)
Fourier Parameters for TMXM (‘TMXMmean’— TMXMpan3’)
Fourier Parameters for TMXS (‘TMXSmean’—‘TMXSpan3’)

Columns 13-19:
Columns 20-26:
Columns 27-33:
Columns 34-40;
Columns 41-47:
Columns 48-54:

Columns 55-62 store the individual elements of the ‘A’ and ‘B’ matrices.

Column 55: A(1,1) (‘faml11’).
Column 56: A(1,2) (‘aml12’)..
Column 57: A2,1) (fam21’)..
Column 58: A(2,2) (‘am22’)..
Column 59: B(1,1) (‘bm11’)..
Column 60: B(1,2) (‘bm11’)..
Column 62: B@2,1) (‘bml1’)..
Column 62: B(2,2) (‘bml1’)..



5. GEMG6 generation of primary synthetic variables (Figure 2).

5.1 Spatial Interpolation of GEM6 Parameters Between Stations

When the user selects a location by left-clicking on a pale yellow area of the large
map, a number of nearby stations will flash in sequence. The VB6 code then calculates
that location’s GEM6 parameters as an inverse-distance weighted average of the Fourier
parameter sets and the ‘A’ and ‘B’ matrix elements of those neighboring stations. Sets of
neighboring stations for ICARDA agricultural areas - the yellow shaded areas in the large
map - are defined in the table ‘near neighbor’ in the Access Database
‘Data/PAR_GEN.mdb’. That table divides the yellow area into 792 1° longitude by 1°
latitude grid areas. The neighboring stations for a 1° by 1° grid area are the stations that
lie within a 3° longitude by 3° latitude grid that surrounds that central 1° by 1° grid. The
‘near_neighbor’ table contains a row for each 1° by 1° grid, each of which consists of 26
columns.

Column 1: The grid index of the 1° by 1° grid (‘grdindx’ = 1-792).
Column 2: The number of stations in the surrounding 3° by 3° grid (‘nstn’).
Column 3: The longitude of the center of the 1° by 1° grid (‘grdlon’).
Column 4: The latitude of the center of the 1° by 1° grid (‘grdlat’).

Column 5: An integer longitude index for the 1° by 1° grid (‘ilon’).
Column 6: An integer latitude index for the 1° by 1° grid (‘ilon’).

Columns 7-26:  The station indices (i.e., the identifying station integer values in
column 1 of the table ‘par_gen’) for each of the stations in the
surrounding 3° by 3° grid (‘stnindx1 — stnindx20’)

Once the VB6 code determines which 1° by 1° grid contains the selected location, the
Fourier parameter sets for the grid’s neighboring stations listed in columns 7-26 are then
retrieved from the PAR_GEN database ‘par_gen’ table. The distances between the
selected location and those stations are then calculated, and the stations are then sorted
according to their distance from the selected location. If the nearest station is within 20
kilometers, then that station’s parameters are assigned to the location. Otherwise, the
location’s parameters are calculated as a distance weighted average of the nearest
neighboring stations using an expanding radius search method.

o If the two nearest stations are within 40 km, then those stations parameters are
averaged,
o Else, if the three nearest stations are within 60 km, then those stations parameters
are averaged,
o Else, if the four nearest stations are within 80 km, then those stations parameters
are averaged,
o Else, if the five nearest stations are within 100 km, then those stations parameters
are averaged,
o If there are more than eight nearby stations, the location’s parameters are
averaged from the nearest eight.
o If none of these conditions are met, the location’s parameters are averaged from
all of the stations in the surrounding 3° by 3° grid.



In some areas where station coverage is sparse (e.g., Sudan and Ethiopia) the last
condition could cause a location’s parameters to, in the worst case, be averaged from the
parameters of stations ~ 200 km away.

5.2 Maximum and Minimum Daily Temperature Generation

To account for the effects of elevation on a selected location’s interpolated
temperature variation, the mean temperature Fourier parameters (i.e., “TMNMmean’ and
‘TMXMmean’) of the neighboring stations are adjusted to sea-level before inverse-
distance averaging. That is,

TMNMmean = TMNMmean - Station Elevation * lapse rate, (D)
TMXMmean = TMXMmean — Station Elevation * lapse rate,

where a mean wet adiabatic atmospheric lapse rate of — 6.5° C/Km is assumed. The
adjusted mean temperature parameters, and all the remaining amplitude and phase angle
Fourier parameters for all the stations contributing to a location average are then
averaged using an inverse distance” averaging scheme. Thus TMXMmean at the selected
location is calculated as,

Zalz- * TMXMmean,

TMXMmean, , =— (2)

1
—~d?

Where d; is the distance between station i and the selected location, and TMXMmean; is
the TMXMmean value for station i. After all of the location’s Fourier parameters have
been estimated in this way, the location’s mean maximum and minimum temperature
parameters at sea level are then adjusted — in most cases decreased, as most stations are
above sea-level — to the location’s elevation as defined by the GTOPO30 digital elevation
model.

TMNMmean; o = TMNMmeany . + GTOPO30 Location Elevation * lapse rate, (3)
TMXMmean o = TMXMmean; .. + GTOPO30 Location Elevation * lapse rate,

After the entire Fourier parameter set for the selected location has been spatially
interpolated, the location’s annual cycles of the mean and standard deviations of daily
maximum temperature and of the mean and standard deviations of daily minimum
temperature are then constructed through an inverse Fourier transform. The annual cycles
of mean daily maximum and minimum temperature are used to depict the location’s
annual temperature variation in the top graph of the Three-Pane display on the
application’s left side. The four annual mean and standard deviation annual cycles, and
the location’s spatially interpolated ‘A’ and ‘B’ matrices, are then used to generate
stochastic streams of daily maximum and minimum temperature in the subroutine
‘CalcTmax_Tmin’. These streams are stored as 100 years of synthetic temperature
variation in the arrays tmn(100,365) and tmx(100,365).
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5.3 Daily Precipitation Generation

A selected location’s precipitation Fourier parameters (i.e., the ‘p00’, ‘pl0’ and
‘XMU’ mean, amplitude, and phase angle parameters) are estimated using the inverse
distance weighting method of Eq. 2. The resulting parameters for the location are then
inverse transformed into three annual cycles: the annual cycle of p00, the annual cycle of
pl10, and the annual cycle of the exponential rainfall distribution parameter (XMU). The
annual cycle of the probability that rain falls on a given day of the year is derived from
the p00 and p10 probabilities via Eq. 4 of Hanson et. al (1994).

1 — p00(n)

, n=1,365 @)
1+ p10(n) — pO0(n)

P(day nis wet )=

These probabilities for each day of the year are used to graph the location’s annual cycle
for daily rainfall probability in the middle graph of the Three-Pane display on the
application’s left side. Because the exponential rainfall distribution parameter is equal to
the average rainfall amount on wet days, the XMU annual cycle is used to graph the
average rainfall amount on wet days in the bottom graph of the Three-Pane display. The
annual cycles of XMU and daily rainfall probability are both used to generate 100 years
of synthetic precipitation data which is stored in the array pcp(100,365).

6. Comparison of real vs. generated primary variable statistics.

The application’s purpose is to estimate the statistics of actual variation of daily
maximum and minimum temperature and precipitation, and also secondary daily
variables derived from those primary variables. But because a database containing
multiple-year records of daily data from 649 weather stations would be too large to
distribute, daily weather variation is generated here from a relatively small set of weather
generator parameters derived from real data. As a result, the accuracy of the application’s
reported statistics is based on the equivalence of real data statistics with the statistics of
the corresponding GEM6-generated data streams. That correspondence is checked here
by comparing mean bi-weekly temperature and precipitation statistics (e.g., as in Fig. 3)
derived from both real and generated data.

Figure 4a is a scatterplot of mean bi-weekly heating degree days (HDD) from the
annual cycles of the 59 GDCN stations used here. Figure 4b is a counterpart figure for
mean cooling degree days (CDD). An example of both of those annual cycles can be
found in Fig. 3c. Figure 4’s X-coordinates are the bi-weekly means of the real data, while
the Y-coordinates are the means of the generated values for the same bi-weekly period. In
both Figs. 4a and b there is relatively close agreement between real and generated bi-
weekly degree-day means. The root-mean squared error for mean heating and cooling
degree days is 10.48° C and 6.73° C respectively.

Less agreement is found in the comparisons of real vs. generated bi-weekly
precipitation statistics. Figure 4c is a scatterplot of mean bi-weekly cumulative
precipitation, while Fig. 4d is a scatterplot of the mean bi-weekly percentage of wet days.
In Fig. 4c the higher degree of scatter for some larger values (> 20 mm) shows that the
relative error (i.e., (real-generated)/real) for some bi-weekly averages can approach ~.40.
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Figure 3. Bi-Weekly mean real and generated statistics for a representive GDCN station calculated throughout
the year. a) Mean bi-weekly rainfall, b) Mean bi-weekly percent wet days, ¢) Mean bi-weekly heating and
cooling degree days.

Somewhat less scatter is found in Fig. 4d, which shows that the GEM6 configuration
used here is marginally better at reproducing rainfall frequency. However, Fig. 4c
suggests problems with reproducing the amounts of daily rainfall during high rainfall
periods. A scatterplot showing real vs. generated means derived from a GEMO
configuration using a mixed-exponential rainfall distribution (not shown) is qualitatively
similar to Fig. 4c. The method suggested for checking the accuracy of the application’s
rainfall statistics is essentially that proposed in Section 3.1. That is, that the user should
always cross-compare nearby station’s results with one another to confirm consistency.
Figures 3 and 4 compare bi-weekly means, but the application presents information
about the distribution of daily statistics accumulated over arbitrarily chosen periods. For
example, cumulative growing degree days and heat stress and cold stress duration on the
Temperature Tab and cumulative precipitation on the Precipitation Tab. While comparing
real vs. generated primary data distributions over a representative number of CWANA
stations is impractical here, Figure 5 makes such a comparison for Crosbyton, Texas



Generated 2 week mean HDD

Generated 2 week mean cumulative rain (mm)

0 a) Heating Degree Days

500

400

300

200 -

100 rms error = 10.48 Deg. C

T T T T T )
0 100 200 300 400 500 600

Real 2 week mean HDD

—_
[eml
<

¢) Cumulative Rainfall

[ IS N ¥ I W |
T T B R B B

rms error = 3.52 mm

—
<

<

L L I B B B B B B B
0 10 20 30 40 50 60 70 80 90 100
Real 2 week mean cumulative rain (mm)

b) Cooling Degree Days

[ S

h

<
|

—

W

<
!

Generated 2 week mean CDD
g S
| {

rms error = 6.73 Deg. C

W
<

0 t } i i i I t 1
0 50 100 150 200 250 300 350 400
Real 2 week mean CDD
70 .
6 d) Percent Rain Days

Generated 2 week mean % wet days

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Real 2 week mean % wet days

Figure 4. Scatterplots for bi-weekly statistics of real (x-axis) vs. generated (y-axis) daily temperature and precipitation data
from the 59 Global Daily Climatology Network Stations used here. a) Mean bi-weekly heating degree days, b) Mean bi-weekly
cooling degree days, ¢) Mean bi-weekly cumulative rainfall, and d), Mean bi-weekly percent wet days.



11

during the summer (May 15-Sept. 15) growing season. That station’s daily temperature
and precipitation data is relatively complete during 1971-2000, thus Fig. 5’s real vs.
generated comparisons reflect GEM6 characteristics rather than differences introduced by
sampling uncertainty. Figures 5 a-c show bar-and-whisker plots of accumulated HDD,
CDD, and rainfall for May 15-Sept. 15. Figures 5 d-g show probability distributions
derived from real and generated data, and are analogous to the red, blue, green and gold
bar-graphs on the application’s Temperature and Precipitation Tabs.

In Figure 5a-c the whiskers mark the extremes of the data distribution, while the bar’s
horizontal lines mark the 80", 60" 40" and 20™ percentiles. In Figs. 5a and c the
generated bars are narrower than their real counterparts, indicating that the distributions
of generated cooling degree days and cumulative rainfall are narrower than that of the
corresponding real data. This is consistent with the strictly random process by which
weather generators produce synthetic data streams, and their related inability to reproduce
interannual variation (Wilks, 1999). For example, weather generators such as GEM6
randomly introduce extreme wet days during the wet period of a station’s annual rainfall
cycle. However, for stations on the coast of California, extreme wet days tend to be
clustered into winter periods marked by El Nifio conditions. Other stations in areas
subject to periodic drought years may experience abnormally long periods of high
temperatures and no rain, which weather generators are unlikely to produce. As a result,
the synthetic data distributions for those stations will show a lower probability of high
cooling degree day totals and low rainfall totals. Weather generators are poorly suited to
reproduce extreme variation in seasonal climate, thus generated probability
distributions will tend to be narrower than their real counterparts.

Figures 5d and e correspond to the red and blue bar graphs on the application’s
Temperature Tab with the heat and cold stress slider controls set to 90.0° F and 55.0° F.
In Fig. 5d the GEM6 generated data shows a 17% probability of a 14 day or longer run of
maximum daily temperatures greater than 90.0° F, while the incidence in the real data is
40%. Conversely, probabilities of runs of less than 9 days duration are higher in the
generated data than the real data. This may be additional evidence of the problem
described above, i.e., an inability of GEM6 to produce long runs of high daily maximum
temperatures that are present in the real data. Figure 5e shows no occurrences of 9 day or
longer runs of minimum temperatures less than 55.0° F in the real data, while the
incidence in the synthetic data is ~15%. In this instance the generated data contains long
runs of low minimum temperature conditions that are not present in the real data.

Figures 5f and g correspond to the green and gold bar graphs on the application’s
Precipitation Tab. Both of those figures show reasonable agreement between the daily
rainfall amounts and the dry runs in both the generated and real data. However, Fig. 5’s
results apply to only one meteorological station and one period of the year. Generally,
because of sampling uncertainty and the inherent shortcomings of weather generators,
the application’s probability of exceedance curves for crop evapotranspiration,
precipitation, and growing degree days, and the bar graphs for temperature and
precipitation, should be considered as approximate estimates.
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7. Secondary variable generation (Figure 6).

Secondary daily meteorological variables were derived here using parameterization
relationships drawn from FAO-56 (Allen et al., 1998).

7.1 Dew Point Temperature
Daily dew point temperatures were estimated from daily minimum temperatures using
the following parameterization scheme (FAO-56, Eq. 6-6):

® Tyew = Tmin- 2°C for locations in arid areas,
o Tyow = Thn elsewhere.

Arid locations were defined here as stations with a mean annual temperature of 18°C or
greater, and a mean annual number of wet days of 55 or less.

7.2 Shortwave radiation at the surface
Daily integrated shortwave surface radiation (Rs) was estimated using the Hargreaves
radiation formula (FAO-56 Eq. 50):

R T -T

= k Rs max min Ra (5)

S

Where,
e kg, is an adjustment coefficient, assigned here as 0. 175 °C %3 ,
e T, is daily minimum temperature (in Celsius),
e T,y is daily maximum temperature (in Celsius), and,
e R, is the daily integrated shortwave radiation at the top of the
atmosphere in units of Joules * 10%/ (met.? * day) (FAO-56 Eq. 21).

7.3 Vapor Pressure and Saturation Vapor Pressure.

Given daily minimum, maximum, and dew point temperatures, the vapor pressure and
saturation vapor pressure are solved for using the Clausius-Clapeyron equation ( e’(T):
FAO-56 Eq. 11)

Actual vapor pressure = €, = €’ (Tgew), (6)
Saturation vapor pressure = es= 0.5% (€°(Tmax) + €"(Tmin))

7.4 Net upwelling outgoing long-wave radiation (OLR) at the surface.
Net upwelling surface OLR was estimated using FAO-56 Eq. 39:

4 4
R, = G[Iﬁ‘?i—?“ﬂ‘-}(&?ﬂl ~0.14 e, {1.35 II:S - 0.35} )

SO

Where,
e o is the Stefan-Boltzmann constant,
e T,inis daily minimum temperature in Kelvin,
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® T, is daily maximum temperature in Kelvin,

e R is the estimated daily shortwave radiation at the surface (Eq. 5)

e Ryo is the estimated clear sky daily shortwave radiation at the surface
(FAO-56 Eq. 37), and,

e ¢, is the actual vapor pressure (Eq. 6).

7.4 Reference Grass evapotranspiration

The FAO-56 method for deriving evapotranspiration rates for various crops is based on
the estimation of reference evapotranspiration rates over a hypothetical grass surface
(FAO-56, Chapter 4). Daily reference grass ET rates are calculated using the FAO-56
Penman-Monteith equation (FAO-56, Eq. 6).

0.408A (1-a)R,—R,-G) + 79—09 u, (e, —e,)
ET, = T

¢ A+y(1+0.34u,) ®
Where,

e A is the slope of the saturation vapor pressure at the mean daily
temperature (FAO-56 Eq. 3-3),

e ¢ is the albedo of the hypothetical grass surface (=.23),

e Rgis the shortwave solar radiation at the Earth’s surface (Eq. ),

e R, is the net upwelling outgoing long-wave radiation (OLR) at the
surface (Eq. ),

¢ G is the soil heat flux density (FAO-56 Eq. 5-2, with an assumed Leaf
Area Index of 2.8),

e v is the Psychometric constant (FAO-56 Eq. 8),

o T is the daily mean (i.e., 0.5(Tmax +Tmin))temperature in Kelvin,

e U, is the mean wind speed at 2 meters, set her via a slider control on the
Crop ET tab, ‘

e ¢, is the saturation vapor pressure, and,

® ¢, 1s the actual vapor pressure.

7.5 Crop evapotranspiration

The application derives crop evapotranspiration rates over arbitrarily defined periods for
a number of crops listed in the selection box at the top of the ‘Crop ET” Tab. These crop
ET rates (ET.) are derived from a location’s derived reference grass ET rates (ET, ) using
the FAO-56 single crop coefficient method (FAO-56, Eq. 58).

ET. =k_ET, ©)

Over the growing season crop ET is derived from the reference grass rates using k. values
drawn from a growing season coefficient profile (Fig. 1b). That coefficient profile is in
turn derived from three k. values defined during an initial crop growth period, a mid-
season period, and an end of season value.
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APPENDIX A: Statistical Sampling Error Assuming a Sample of 60 Measurements

The GEM6 weather generator parameters stored in columns 6-54 of the ‘par_gen’
table are the means, and Fourier amplitudes and phase angles of a meteorological
station’s annual cycles of temperature and rainfall variation. Those annual cycles are in
turn formed from 12 statistics calculated over monthly periods:

e the means of daily minimum and maximum temperature (TMNM, TMXM),

e the standard deviation of minimum and maximum daily temperature
(TMNS, TMXS),

e the average of daily rainfall on wet days (XMU), and,

e daily rainfall transition probabilities (p00, p10).

Because these statistics are calculated here from a sample of daily data containing as few
as 60 measurements, they are subject to sampling error. In general, the magnitude of this
sampling error is proportional to N?, where N is the number of measurements

(Mendenhall et al., 1990).
For a sample mean calculated from 60 measurements (e.g., TMNM, TMXM, XMU),

with a population mean of py and a sample mean of Xs, sample means are normally
distributed about the population mean.

GX
60

Lo—X, =+ Zi—2== + Z*.129%0, , Al

where oy is the population standard deviation. As a result, with a ~68% probability (i.e.,
Z=1), the sampling error is less than or equal to .13 * ox. But in ~32% of cases, the error
may be as large as .26 * o, (i.e., Z = 1.96). A probability estimate (P;) derived from 60
measurements is similarly distributed about the true population probability value (P). The
error between the true value and the estimate is given by,

#®(1 —
P-P, :iZ&ﬁi%;ﬁ A2

ForP=.5,

P-P, =+ Z+5%.129 = £ Z*.065 A3

S

Thus with a 68% probability, the sample probability mean will fall between .435 and
565. The error distribution narrows for values of P less than or greater than .5. For
example, for P =.2 or .8,

P-P, =+ Z%4%.129 = £ Z%.052 A4

In that case the sample probability will fall within .148-.252 or .748-.852 with a 68%
probability.
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For a sample variance (S?) calculated with 60 measurements and a population
variance of 6° , the ratio,

(n—1)*S°

2 *

1¢)

A5

is a ¢’ variable with 59 degrees of freedom (Mendenhall et al., (1990)) As a result, the
ratio S* /o lies within a specified range with a 95% certainty .

2
P{43.188<S <79.()82} _ o5 A6

59 o’ 59

Taking the square root,

P{JBZ < —S—S 1.15} =.95 A7
(8

So to within a 95% certainty, a sample standard deviation (S) calculated with 60
measurements lies within the range .732*c to 1.15%c, where ¢ is the true standard
deviation.

Columns 55-62 in the Access table ‘par_gen’ are array elements which are in turn
derived from correlation and cross-correlation values between daily minimum and
maximum temperature. Like the sample mean and sample probability errors in Egs. A.1
and A.2, sampling error for correlations estimated from a sample of 60 measurements is
governed by an N~ relationship (Box and Jenkins, 1976).

= + 7+.129 A8
J60

But unlike the sample probability relationship in Eq. A.2, the range of error does not
narrow as the true correlation value (p) approaches 0.0 or 1.0. That is, if p = .5 then ps
will range between .371 and .629 with 68% probability. If p = .2 then p; will still range
+/- .129 of the true correlation value (.071-.329) with 68% probability. The relative error
(i.e., (p.ps) p) is greater in the latter case.
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8. Third Party Software Components

Continued development of the application’s Visual Basic project (‘betad.vbp’ under
the source subdirectory on the source code CD ROM) will require acquiring the
following software packages, and adding those packages on the project’s Component
Toolbox:

e ProEssentials Version 5 (Standard): Graphics software necessary to produce
the application’s various graph objects. Available at www.gigasoft.com.

e Component 6 Toolbox. A set of Active X controls that provides improved
appearance relative to the controls normally provided in Microsoft Visual
Studio. Available at:

http://www.dbitech.com/product page Component Toolbox.asp

e ESRI MapObijects Lite Version 2: Mapping and GIS software necessary to
support the application’s two maps. Available at:

http://www esri.com/software/mapobjectslt/index.html
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